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EVALUATION

The purpose of this effort was to demonstrate the concept of Equivalent
Aperture Loading (EAL) and interface this concept with the "Method of Moments"
(MOM) analysis called "Bodies of Revolution" (BOR). The reason that this
combination was chosen is that previously MOM and BOR were applied to a
conceptual aperture coupling problem on board a missile. The results were found
to be questionable because of the inability to accurately model the complex shaped
aperture involved. This effort combined the EAL technique with MOM in an
attempt to correct this deficiency and at the same time demonstrate that such a
hybridization of techniques is cost effective in terms of computer resources.

The results of the field mapping insice the missile are contained in this report
and will be compared to those obtained from measured data associated with
another RADC/RBCT project when it is completed,

The advantage of this technology are a computer cost savings by hybridizing
two or more analysis techniques while maintaining a reasonable degree of
accuracy.

&~ vau,/ g %
< ¢ ’ [W

DANIEL E. WARREN
Project Engineer
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SECTION 1

INTRODUCTION

Bodies of revolution (BORs) are rotationally symmetric structures that approxi-
mate the enclosures of many practical systems such as missiles and aircraft fuselages.
The aperturc loading technique (ALT) is applied here to predict the plane wave ex-
cited E~ and H-fields penetrating a thin, conducting walled BOR. The BOR has an
open front end and a thin, dielectric-filled, sleeve-fit seam formed by overlapping
walls. The present version of the computer code implementing ALT applies to arbi-
trarily shaped BORs with any number of simple apertures (circumferentiazl will sepz-
rations) and one thin capacitive seam. The code can apply, with minor modi{i-aticon,
to any number of odd-shaped seams and openings with material fill; e.g., cunductive

putty, fiber glass, or composite.

The aperture characteristics are dealt with naturally in a localized maaner.
In the case of composites, this permits rolative ease in zrcountirg fer the sniso-
trophy of the medium. The aperture characteristi~s can be varied for reasonably
small apertures with only minor changes in computataoa. This Is particalariy ose-
ful for apertures that are iii-d=fined where oniv zn average respons: ur othexr sia-
tistical measure is appropriate. An ill-defincd aperture. for example, is & sleove-
fit seam in a missile shell; the spacing between seam walls nay very fror missile tO
missile since the fit is designcd to be as "tight'" as possible. 3cJ.ial - xunples
such apertures are shown in Figure 1.

The computer code extends the capability of an earlier BOR aperiur. o3 ti..

code, BOR3 [9), principally by employing ALT. Additional oxtensions and ir. ove-
ments include near H-field computation, ¢~ as well as 6-polarized plane wave ox-
citation, computer memory requirement reduction by apr.roximately 60 perceni i3
out-of-core matrix computation and inversion. The out-of-core capabi’it; = ows

large problems to be solved if long run times can be tolerated. The present version
of the code [4] is a collection of several codes and is operational on a PDP-11/34 mini-

computer. The solutions presented in this report were obtained with tie PDP-11/2,

As with BOR3, the ALT BOR code is based on a Harrington/Mautz BOR moment method
for obtaining plane wave excited scattering currents. The Harrington/Mautz code
employed in developing the ALT BOR code is a revision of the original Harrington/
Mautz code [12] employed in BOR3., The revised Harrington/Mautz code [1] sacrifices
some accuracy in matrix element computation but achieves at least 50 percent faster

run time. The revision, however, is applicable only to closed hodies; therefore an

1-1
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edge elemen: expainsicn function was incocporated in the ALT BOR .ode in the samé man-

ner as in the origival darciaguron/Mautz code,

It also was necessary to alter the near E-field computation from that of BOR3;
however, it still follows closely Bevensee's approach [6] as employed in BOR3. A
near H-field computation also was included. The theory and coding were adapted from

a Harrington/Mautz H-field formulation BOR moment method [11.

A third Harrinpyton/Maute E-field formulation moment method BOR scattering code
has recently become available [13]. This code is superior to the previous Harrington/
Mautz codes, especially in the manner in which it treats edge effects. Following
the work of Wilton and Glission [10], they employed a '"shifted" pulse type expansion
function for the <¢-directed surface current component with excellent success in
removing the computationally induced surface current oscillations that occur with
some geometries. An ALT BOR code based on this improved BOR code presesntliy is under

development.

The ALT BOR code also is based in part on the equivalent aperture excitation
technique (FAET). The EAET is characterized by greater sensitivity over the conven-
tiona; -~ear-field scattering methed [6] in that =mall field strengths are determined
more accurately. In the conventional method, the surface current induced on the con-
ducting portion of the body and its corresponding scattered field are determined.

The internal field then is found by adding the impressed (exciting rield in the ab-

sence of the body) and scattered fields. For small field levels, such as those as-
sociated with tiny apertures, this computation involves a subtraction of alnost
equal numbers with a corresponding loss in accuracy. This difficulty is avoincd
with the FEAET because the internal field is computed as a radiation probles ~rece an
equivalent aperture excitation is determined. The improvement in sensitivit— of ii-

EAET over the conventional method has been demonstrated [9].

The BOR3 code was the first to employ the EAET. The EAET subsequentiv has been
employed in a moment method, body of translation, aperture coupling ccde [141. The

LAET also has been incorporated in a moment method BOR code in a more eflticiert man-

ner than in BOR3 [10].

A detailed theoretical trecatnent of the ALT BOR code from basic BOR theory rto
the EAET is given in Appendix A. ALT is a natural extension of the EAET and the
principal reason for developing the ALT BOR code. The theoretical basis of ALT is

given in Section 2.

1-3




SECTION 2
PLANE WAVE EXCITATION OF BOD1ES OF REVOLUTION WITH COMPLEX APERTURES

An E-fileld formulation, moment method solution of body of revolution (BOR) ap-
erture coupling problems is detailed in Appendix A. Consider a plane containing a
straight line and an arbitrarily curved line. The surface of a BOR is traced by the
curved line when the plane is rotated with the straight line as its axis. The
straight line is called the axis of the BOR and is typically the z axis of a standard
oz cylindrical coordinate system. The curved line is called the generating curve
of the BOR. These and other characteristics of a BOR are discussed in Appendix A,

which also contains a description of the equivalent aperture excitation technique
(EAET).

The BOR3 computer code [9] implements EAET, but is hampered by an unnecessarily
large computer memory requirement; in addition, BOR3 applies only to é—polarized
incident waves and does not determine internal H-fields. The ALT BOR code based
on the theory in this report extends BOR3 to include ¢-polarized incident waves
and near H-field computation. It also requires about 60 percent less computer mem-
ory than does BOR3. 1In addition, the ALT BOR code employs the aperture loading tech-
nique (ALT) suggested in [9(Section 5.2)], but not previously implemented. ALT ap-
plias to apertures considerably more complex than simple circumferential openings.

The extension of EAET to include ALT is discussed below.

Following the BOR theory of Appendix A, the E-field component tangential to ap-

erture surfaces, EAtan’ is expanded as

t 2 ¢ -
= 1
EA Z : (EAnp t + EAnp ) (1)
np
where
t t n?
TAT = ~VA"  §(t-t ) — (2)
np np p’ 2w
jnd
ga® = —va? §(e-t ) — (3)
np np p’ 2w

The curvilinear coordinate t in (1)-(3) (Figure A-1) traverses the BOR generating

curve (latitudinal variation), the ¢ coordinate (Figure A-1) is the azimuthal

2-1




(longitudinal) coordinate, 6(t) is the unit impulse function, the integern{-«= <n <=)
spans the azimuthal BOR (sinusoidal) modes, the interger p (p>0) spans the BOR gener-
ating curve triangle functions that reside in an aperture, tp is the t coordinate of
the peak of the pth aperture triangle function, and VA.rtlp , VA:p are coefficients

in units of volts.

The surface current, JA, {lowing through the apertures when the apertures are

excited by (1) is expanded as

_ £ oty 000 & . 8 b\ iné
JA :E: (1ag, £, £+ 18 £2(0)™ §) (4)
np

where f;(t) and fg(t) are, respectively, the t-directed and ¢-directed unit triangle
functions divided by the BOR radial coordinate, p (p is understood to be a function
¢

of t), and IAEP, IAnp are coefficients in units of amperes.

0

th . >t >t > ¢
Let the p elements of the matrix column vectors IAn, IAn, VAn’ and VAn be

1at , IA¢ s vat , and VA¢ , respectively. As discussed in the appendix (Section A-6),
np np np np

th s s . th
the n~ mode of aperture surface current coefficients is related to the n ~ mode of

aperture E-field excitation coefficients by the matrix equation

¢] A

TA (yatt1  [vat VA

n n n n
= (5)

T’ va®t)  va®? val

n n n n

. . tt . . th
The matrix containing the [YAn ] etc. submatrices is called the n mode "aperture
admittance matrix." The elements of this matrix are obtained from the BOR moment

method theory detailed in Appendix A.

The equivalent aperture excitation technique (EAET) employs (5) in obtaining

>t >
aperture port voltage source vectors, VAn and VAi, from "equivalent aperture port

current excitation vectors" fZE and fZi. The fﬁs and fZi are known (Equation {A-122))
from the surface current induced on the BOR after the apertures are covered with per-
fect conductors. This is discussed in Section A-6. It also is shown in Section A-6

that excitation of the BOR with an equivalent aperture current excitation in terms

2-2




of fk; and fZi or, more conveniently, the aperture tangential E-field in terms of

63; and 622 (the apertures are replaced and the external exciting field removed), re-

sults in the internal fields of the original problem.

1f, however, the aperture has complex edges (e.g., a sleeve-fit seam) or is ma-
terial filled (e.g., with a dielectric) or both, some current will flow through this
aperture '"load" when excited by the equivalent current source. This is accounted for
with ALT by first identifying the relationship between Eﬁtan and the surface current,
JL, flowing through the load. Corresponding to (4), the expansion for JL is

JL = :E: (ILrtlp f;(t) L S IL:p fg(t) e3¢ 4y (6)
np

Since the walls of the BOR are thin, EAtan fills the aperture load surface and is
related to JL through local phenomena relations; e.g., [11]

JL = (o + jue-eq)) EA (7
if the aperture is filled with a material of finite conductivity (o) and permit-

tivity (e).

Equations (1), (2), (3), and (6) and relationships such as (7) yield

>t tt At
IL (v "1 (o] VA_

= - (8)
5 ¢ ¢¢ Xy
L (o] ye "] VA

t
where fi; and fi: are matrix column vectors, the pth elements of which are Ian and
IL:p, respectively, [0] is the null matrix, and [YLEt] and [YL2¢] are diagonal matrices.
The matrix containing the [Yth] etc. submatrices is called the aperture load matrix.

Continuity of current constrains the total aperture current, JA, to be

JA = -J5 + JL (9




where -JS is the equivalent aperture excitation current given by (A-120). Equations
(4), (A-120), and (6), combined via (9), yield

AL st Lt
n n n
= - + (10)
a? is? A
n n

Zquation (10), with (5) and (8), yields

tt té tt >t >t

[YAn ] [YAn ] [YLn ] [0] VA Is_
+ = - (11)

ot ¢ 99 >0 =]

{YAn ] [YAn ] [0} [YLn ] VA.n ISrl

Thr solution of (11) for VZ; and sz provides EAtan via (1) through (3). As shown in
Appendix A, Section 6, EAtan can be applied as an excitation resulting in the inter-
nal fields of the original problem.

If the th aperture port is an electrically small, dielectrically-filled sleeve-

fit seam (Figure 2), the corresponding elements of (8) lead to

it = oyttt ovat (12)
nq nqq  nq

? = _y%® va? (13)
nq nqq  nq

DIELECTRIC

EXTERNAL PEGION OPENING — L.

1

\INTEP.NAL RERICN OPENINA

h—

Figure 2. Portion of BOR Generating Curve Containing a Sleeve-Fit Joint
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Since the aperture width, h, is much less than A, VA:q may be assumed zero. The
¢-directed "load" current, IL:q, can easily "skirt" the thin aperture as if the ap-
erture were absent and cancel the equivalent port current excitation, _Isiq; thus,

by (10), IAi = 0 and (11) is reduced by one equation and one unknown by removing the

qth rows of [YAit], [YA2¢], and [YL:¢], and the qth columns of [YA;¢], [YR: ], and

[YL?¢],and the qth elements of VR¢ and f§¢.
n n n

The aperture load admittance, YL;;q, for the sleeve-fit seam is approximated as
follows. The thh triangle function is located with peak at the gap. From (2), the

voltage across the gap V a

gap is approximately

v = EAC de = - vab £ (14)
gap nq nq 2w

gap

ENNEN

The surface current flowing through the gap, containing both displacement and polar-

ization current, is given, from (6), by

. t .t Jn¢
- I = IL f (¢ 15

! gap - Tnq fqfq) © (15)
. |

2 or, since f;(tq) = % (note discussion following (4)),
} in¢

{ 1 =1t &£ (16)

. gap nq o

BT R o e o

I
B3P - yuc an

c - (18)

r




Equations (12), (14), (16), (17), and (18) yield

te _ Juelp
Yanq 27h (19)

In terms of dielectric constant, €. s free space wave number, k, and free space

wave impedance, n,

te | JKESP

Yanq = m—— (20)




SECTION 3

APPLICATION TO A MULTIPLE APERTURE, PARTITIONED CAVITY BOR

The aperture loading technique (ALT) was applied to a BOR defined by the gener-

ating curve of Figure 3. The excitation was the nose-on x polarized unit plane wave

e _ _e-jkz -

E x V/m (21)

defined with reference to the coordinate system shown in Figures A-1l and A-2 and
where k is the wave number corresponding to 300MHz. The body had two apertures:
open front end and a sleeve-fit, dielectric~filled seam. A conducting partition

was located at z = 0.255m,

The partition was assumed to meet the outer wall at z = 0.255m since h was elec-
trically very small. This formed a three-surface junction which could not be modeled
with the ALT BOR code without significant code modification. Variations to the
Figure 3 BOR multiple surface junctions are shown in Figures 4 and 5. An accurate
solution to the Figure 3 aperture coupling problem was achieved by properly defining
the Figures 4 and 5 problems and combining their solutions within the equivalent

aperture excitation technique (EAET) framework described below.

The EAET naturally divides into three parts. Part 1 uses BOR scattering theory
(Sections A-1 through A-3) to obtain the external scattering current with the aper-
tures removed (shorted). Here the Figure 4 BOR (solid line) applies exactly. Part
2 uses BOR theory (Section A-6) to obtain an aperture voltage excitation by computing
an aperture admittance matrix and combining it with an equivalent aperture current
excitation., The current excitation is the negative of the externmal scattering cur-
rent induced on the aperture shorts in Part 1. (The ALT improves this aperture volt-~
age excitation computation by adding an aperture load admittance to the aperture ad-
mittance matrix as described in Section 2.) The aperture voltage excitation is ob-

tained by exciting both external and internal regions simultaneously. Neither Fig-

ures 4 nor 5 modei the Figure 3 body exactly for this computation. Since the body is
electrically thin at 300 MHz, the internal fields decay rapidly away from the aper-
ture and the Figure 4 model is expected to be adequate for computing the aper-

ture voltage excitation.

Part 3 of the EAET uses BOR theory (Sections A-4 and A-5) to compute the inter-
nal fields by applying the aperture voltage excitation to the BOR. This computation

3-1
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Figure 3. Generating Curve of a Conducting ROR with an Open Front End,
a Partitioned Cavity, and a Dielectric Filled, Sleeve-Fit Seam
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results in the same internal fields when applied to the Figure 5 body as for the
Figure 3 body.

This scheme of using the Figure 4 body for Parts 1 and 2 of the EAET and the
Figure 5 body for Part 3 was expected to result in a good approximation to the inter-
nal field of the Figure 3 body when excited by (21).

The numbers of triangle functions on the Figures 4 and 5 generating curves were
chosen to provide the desired resolution in near field. This was critical only for
the Figure 5 geometry since, as discussed above, the Figure 4 geometry was not used
for near-field computation. The Figure 4 expansion functions must be sufficient to

resolve surface current and aperture voltage.

Only the n = 1 BOR mode fields and currents are excited by axially incident
plane waves. The incident field Ee given by (21) is 6 directed in the ¢ = 0 plane.

From (A-55), therefore, the induced surface current has the form

¢

surface current due } t sin ¢ $ (22)

e = J cos ¢ E +J
to E” of (21)

where t is the generating curve coordinate (Figure A-1). Surface currents computed

by the ALT BOR code are prone to exhibit severe oscillation particuiarly if the BOR
surface has edges and the BOR is thin. This was experienced by Davis and Mittra [15].
The problem was analyzed by Glisson and Wilton [16], and they developed a corrected

BOR moment method code. Another corrected BOR moment method code recently was de-
veloped by Mautz and Harrington {13]). The Mautz and Harrington version, more closely
resembling the BOR code upon which the ALT BOR code has been developed, is in the proc-
ess of being adapted to the ALT BOR code.

The present version of ALT BOR code, meanwhile, has been applied to the Figure

3 problem via the Figures 4 and 5 geometries as described above. The computed scat-
tering current on the Figure 4 geometry exhibited severe oscillations in both Jt and
®
J".

metry was rounded as indicated by the dashed line in Figure 4. This avoided the edge

In attempting to reduce this oscillation, the tail section of the Figure 4 geo-

at reference point 7. The curved path was chosen such that the path lengths 6a to 8a

and 6a to 7 to 8 were equal. The generating curve then was segmented (for triangle
expansion functions) in a manner maintaining less than 2:1 variation in adjacent seg-

ment sizes. The rounded tail section and small variation in adjacent segment sizes

¢

resulted in the Jt and J* curves of Figure 6. The generating curve was divided into
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N t
86 segments (42 triangle functions). The J current then was reasonably smooth. The

J; current, however, still oscillated severely. Nevertheless, the ALT/EAET was con-
tinued in the belief that the internal fields were not strongly affected by the oscil
lation in J°. 1In Figure 5, the currents are plotted vs. the z coordinate of the gen-

erating curve. Each plot point corresponds to the peak of a triangle function.

Two sets of five aperture voltages sources (four at the front end and one at
the sleeve fit seam) were determined. One set corresponded to the air filled seam
and one to the dielectric filled seam (dielectric constant e, = 5.5). These sources
were applied to the Figure 5 generating curve as indicated in Figure 5, and the inter
nal E- and H-fields computed. The Figure 5 generating curve was divided into 82 seg-

ments (40 triangle functions).

The internal fields have the form (note (A-78) and (A-118))

E-field cue to
ES of (21)

~—
i
o>
e
>

= Ep cos ¢ p + E_ cos ¢ z + E sin ¢ ¢ (23)

¢

H-field due to

=H sin ¢ p + H_sin 1 z + H, cos ¢ & (24)
S of (21) p SIm 4P T, : i
Contour maps of the magnitude of E , Ez, E, vH, vH7, and 't in dB are shown in
Figures 7 and 8 where r. is the free space wave impedance. The rvsolution of computed

internal field data to achieve these plots wus 0.005 m within 0.02 m of an aperture

and 0.01 m elsewhere. The field contours were smoothed wherever oscillations were

likely caused by the granularity of the surface current representation. Field oscil-

lations were evident primarily within a centimeter or so of a conducting surface.

The fields (Figure 8) in the dielectric filled seam case were approximate-
ly 25 dB below those (Figure 9) for the air filled seam case near the seam.

This could have been predicted by comparing the n = 1 mode radiation admittance

tt tt
(YAl,S,S 1,55 of (20))

for the air filled seam and the dielectric filled seam as follows. The aperture vol-

of (11))* at the seam with the aperture load admittances (YL
tage sources were determined from the equivalent aperture current sources (the latter

are independent of aperture loading) by adding together the radiation and load admit-

tances and inverting the sum as suggested by (11). 1In the problem under consideration

* The 5,5 matrix element corresponds to the seam aperture for this problem.
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-

tt
YA1,5,5 0.04 - j1.34 mS

and for the air filled seam and dielectric filled seam respectively

tt -
YLl,S,S j1.78 mS
“r = 1.0
tt
= 39, S
YLI,S,S J9 82 m
“r = 5.5

Thus, the total admittance in each case was

tt tt
- = 0.04 + 10.44 mS
Yagr = YAy 5,5 7 YL1,5,slL i
r=10
tt tt
- = 0.06 + §8.48 mS
Yy1e1 = Y8y 5,5 + Y“1,5,5L 3
r= 5.5

The smaller Yair resulted in a correspondingly larger aperture voltage excitation.
The air filled seam nearly '"resonated" the aperture by almost cancelling the radia-
tion inductive reactance. The dielectric filled seam, on the other hand, introduced
a shorting effect by adding a large aperture capacitance to the relatively small

aperture radiation reactance. Since

| --25.6 dB

20 log lYair/Ydiel"

the <25 dB smaller fields for the dielectric filled seam than for the air filled

seam was to be expected.

The air filled seam problem has been analyzed previously by a time stepping solu-
tion to the time dependent differential Maxwell equations [17]. Maxwell's equations
were solved at each of many time steps until a steady state solution resulted. Their
results differ significantly from ours. Some of this difference, perhaps, can be
attributed to the unwarrented oscillations in surface current as computed with the
present ALT BOR code. The ALT BOR code is presently undergoing significant improve-
ment in this area as mentioned above.
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The ALT BOR code was implemented on a DEC PDP-11/34 minicomputer. The above

problem

enormous amount of input/output time necessary to accomodate large complex matrices

(orders

The equivalent approximate run time assuming the entire problem was solved with

main memory (no peripheral storage) is given by

Time = n(A(mi + m3

where

n-=

A,
A second
terial t

ponding

The

1 O O W >
"

where th

plus imp

The
only the

larger o

required hours of central processing time with this machine due to the

approximating 80) with 128K bytes of main memory.

3
+ a3) + B(mi + mg + az) + Ci(mi + m, + a3) + Dim, + Epmz)

2 1

(25)

number of triangle functions on the exterior problem generating curve
(e.g., that of Figure 4)

number of triangle functions on the interior problem generating curve
(e.g., that of Figure 5)

number of triangle functions within the apertures
number of near field points
number of different incident plane wave directions

number of BOR modes

B, C, D, and T are system dependent constants.

computation with a change in aperture loading (e.g., adding dielectric ma-
o the sleeve-fit seam of Figure 3) requires only the additional time corres-
to doubling Ag, Ci(mg + az), and Epmz.
coefficients in (25) for a Honeywell 6000 series system are

3.2x1072

1.3x1072

5.0x10"°

3.2x1072

0.87
e near field computation time coefficient E is for total E-field (scattered

ressed).

principal computer main memory constraint is mi + mg complex words, or if

"exterior or "interior" problem matrix is in main memory at one time, the

2 2
f my and m, .
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APPENDIX A

BODY OF REVOLUTION SCATTERING AND APERTURE COUPLING

This appendix contains the description of an extension to the Mautz/
Harrington [1] moment method solution of an E-field formulation for scattering from
closed conducting bodies of revolution (BORs). The following conditions are
applicable:

1. The BOR may have edges (disks, tubular cylinders, etc.),

2. The BOR may have apertures that are rotationally symmetric about the
BOR axis,

3. An electrically thin aperture may be of complex shape (e.g., ''sleeve" fit)
or material filled,

4, The scattered near electric fields, internal and external to the BOR, can
be computed, and

S. The scattered near magnetic fields, internal and external to the BOR, can
be computed.

The development follows closely that of Mautz and Harrington.

It is desired to determine the electric surface current and the near scattered
field of a perfectly conducting BOR (Figure A-1) excited by an incident plane wave.
In Figure A-1, p, ¢, and z are cylindrical coordinates and t and ¢ form an orthogonal
curvilinear coordinate system on the surface, S, of the BOR. The t coordinate tran-
verses the ''generating curve'" of the BOR. t and ¢ are orthogonal unit vectors in
the t and ¢ directions, respectively. The coordinate origin is on the axis of the -

BOR but not necessarily at the lower pole as in Figure A~1l. Figure A-2 defines the

propagationvector,ke, of the incident plane wave and the transmitter coordinate ee.
Note that the transmitter ¢ coordinate is zero so that Ke lies parallel to the xz
plane. 1In Figure 2, ée and $e are unit vectors in the 6e and y directions, respec-

tively.
Consider separately a 6 polarized incident plane wave defined by
EE=6 e ¢ (A-1)
< e

and a ¢ polarized incident plane wave defined by

pRvs

-jk _-r
Ee - (5 e ~e -~ (A-2)




Figure A-1. Body of Revolution and Coordinate System
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Figure A-2. Plane Wave Scattering by a Conducting Body of Revolution




where Ee denotes the incident electric field and r is the radius vector from the ori-

gin. Either plane wave gives rise to t and ¢ directed electric surface currents

on S.

1. E-FIELD SOLUTION

The E~field solution is obtained by applying the method of moments to the E-field
integral equation. The E-field integral equation is derived by setting the component
tangential to S of the total electric field equal to zero on S.

The boundary condition that the total tangential electric field is zezo on S is
written as

s e
“Fran =~ Ftan O™ ® (a-3)

where gs is the electric field due to the electric surface current on S and Ee is
the incident electric field given by either (A-1) or (A-2). The subscript tan de-
notes tangential components on S.

The field E° can be expressed in terms of a vector potential, A, and a scalar

potential, ¢, as

E° =~ JuA(d) - 78(J) (a-4) 1

>
~~
[
SNt
[}

oiklr-r'|
A(J /[J(r ) =———— ds' (A-5) -
-

-ik |~z |
L'/‘/lj-e———————ds' i (A-6)
© brfe-r' |

Here, r and r' are vectors to the field and source points, respectively, J(r') is

2(3)

the electric surface curreant on S, k is the propagation constant, u is the permea-

bility, ¢ is the permittivity, and o is the surface charge given by

J(r)-ndc
ot sy L
AS~D jw
A-3




where n is the unit vector tangential to S and normal to the curve, C, which bounds

the small portion, AS, of S. n points away from AS. The operator Ys' is the sur-

face divergence on S.

Following the method of moments, J is expanded as

- t .t ¢ ;9
J = Z (Inj gnj+1.g.> (A-8)

A nj °n
n, j J J

¢

where I; and I¢ are coefficients to be determined and J;j and Jnj

3 nj
functions defined by

are expansion

t _ .t jn¢
Jnj tfj(t) e
(A-9)

¢ _ o¢® jn¢
Jnj ¢fj(t) e

The choice of functions f;(t) and f¢(t) is discussed below. The integral over S of

3
the dot product of (A-3) with each one of a collection of testing functions, W;i’
$
wmi’ defined by
t _ oct -jm¢
A tfi(t) e
(A-10)
- ¢? ~jm¢ .
LR MO |
is taken to obtain the matrix equation
z ([z“] I+ [zw] 1 ) -
mn n mn n m
n
(a-11) i

2"

Z ([z“’t] + [z‘”] f¢) - v
mn mn n m
n
where the [Z]s are square matrices whose ijth elements are defined by

Pq - P, q 9
Zont] ffwmi (Jua(3ly) + 7o(13,)) ds
S

A-4
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where p may be either t or ¢ and q may be either t or ¢. Also, Gg and 31 are

.th
column vectors whose i~ elements are given by

P _ P .
Vmi _lyfwmi

S

€ds (A-13)

M

where p may be either t or ¢. Lastly, f: and f: are column vectors of the coeffi-

¢

. t s .
cients Inj and Inj appearing in (A-8).

The following manipulations serve to transfer the differential operator on ¢

in (A-12) to W2.. If S is closed,

//ys *(¢W) ds = 0 (A-14)
5

where W denotes Wﬁi' If S has an edge, the surface divergence theorem yield.

f/\zs A ds=f£-¢>w dc
S C

where C is the path of the edge. Hence, with W chosen such that t'W = 0 along the
edge, (A-14) holds whether S is open or closed.

The representation

2

5 W9 (A-15)

é% (b W-£€) + %
of the surface divergence and the definition

Yo =t ot b = (A-16)
of the surface gradient imply that

v, - (¢ W) = Y -WHW - U0 (A-17)
The surface gradient of ¢ in (A-17) can be replaced by the ordinary three-dimen-

sional gradient of ¢ because (A-16) is the component of the three-dimensional gradi-
ent tangential to S and W is tangential to S. Substitution of (A-17) into (A-14)
and then (A-14) into (A—{Z) yields




= . q -
mnij Jw j:/ L @(gnj) + om ¢ (J )) (A-18)
where
P =Ly WP (A-19)
mi jw ~s ~mi

Since, as shown in Appendix B of Reference 1, (A-18) is zero for m # n, (aA~11) £
reduces to !

[zt"] z“’] v 1
n n n n z‘
N (A-20) !

[z‘”t] "Zw] 2¢ 7o
n _n n n

where [Zpﬂ is chﬂ of (A-18).
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It also is shown in Appendix B of Reference 1 that the

2Pd :
elements of[ ]are given by )

Zttlrij - jnfdt /dt' EIHON "E5(t") (Gg sin v sin v' + G, cos v cos v') ‘ !
= (ef[()) (5 at' o'f§(t')) G, ) (A-21)
205 - -n/dt p£? (1) fdt' (Kore5e") 6g stn vt + 2 2 (0765(e") o)
(A-22)
zr";i’j = n/dt fdt' o'f?(t')(kzpfi(t) G sin v + plsag (p£5(0)) 6, ) (a-23)
l

2
z:fj = jnfdt pfi(t) fd:'p'fg’(t') (1<2(;5 -2, ca) (A-24)




”»

where n is the wave impedance, Yule , v is the angle between the tangent to the gen-

erating curve and the z axis,

m e-JkR
C4 = / de' WR_ °°s (n¢') (A-25)
A )
™ ~-jkR
G5 = -,ﬂ de¢' R~ cos ¢' cos (n¢') (A-26)
0
il ~jkR
G6 = / d¢' € R sin ¢' sin (n¢') (4-27)
0

and

R = \/(p—o')2 + (z-2")2 + 4pp’ sinz(%'—)

Here, p, z, and v depend on t while p', z', and v' depend on t'.

To evaluate (A-21) through (A-24), pfi(t) is defined as a four-impulse approxi-
mation to a triangle function in the following manner. Letting t = (p,z), denote
that p and z are cylindrical coordinates of the point t, an odd number greater than

or equal to 5 of comsecutive points t = (p,z) = t; = (p;, zI), i=1, 2,...P on the

generating curve of the body of revolution such that (pi, zi) and (p;, zp) are the
poles. If the body of revolution has no poles because the generating curve closes

upon itself, as with a torus, then two points must be overlapped such that
(bp_y» zp_y) = (07, z7)  and  (op, z3) = (05, 23)

The generating curve is approximated by drawing straight lines between the points
(p;, z;), i=1, 2,...P and defining points
p, + 0, z, +z,
- - _ i i+l i i+1 _
t = ti = (Oi, zi) = 2 ’ 2 (A 28)

on this approximate generating curve. The length, di’ of the interval centered

about ty is given by

e ——— g
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4y = \/(°1+1 -° ) e z;)z (4-29)

In terms of coefficients Tp+41-4 defined by

2
T ] kdpi1
4i-3 T 2@, F a )
K(d +14 ya
T _Kldyiq T3 909y
4i-2 d2i—1 + dZi
(A-30)
1
‘ I PV M R Y25 R T 0
| 41-1 dojer ¥ doi40
’ 2
: o e
; 41 2(dy 4y * dyyyp)
|
one constructs
t 1 4
pEL(8) = ¢ 5;% T rates St 00 o) (A-31)

where 8(t) is the unit impulse function. The right-hand side of (A-31) is the de-

sired four-impulse approximation to a triangle function (Figure A-3).

The pf (t) are chosen equal to pf (t) except at an edge where the ¢ component
of surface current approaches infinity, therefore, the pf¢(t) functions nearest

edges are chosen as ramp functions (Figure A-4). A four-impulse approximation re-

sults in
¢ 1§
, pEL(t) = ¢ };% TR y4imt S(Eto401 0) (A-32)
1
where TR except for TR, and TR, if an edge exists at the beginning

p+hich = Tp+hi-h 1 2

of the generating curve or for TR4 e-1 and TR4 e if an edge exists at the end of the

generating curve where ne = number of pf¢ traversing the generating curve. For a be-

g ginning edge,
A~9 E
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to the derivative of the triangle function of Figure A-3 is chosen. Figure A-5 il-

lustrates A-35.

' TR1 = 2kd1 - T1
' (A-33)
TR2 = 2kd2 - T2
'
F.r an end edge,
i
! TRlme--l B deng—l - Tlme-—l
’ (A-34)
{ TRine = deng " Tone
i where ng = number of segments traversing the generating curve.
| For é% (pfz(t)), the four impulse approximation
i
]
l d L
— = ' - A-3
| o (£ (t) p§=:l LAV X IOy (a-35)
|
|
|
i
|
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The coefficlents T'p+41_4 appearing in (A-35) are given by

1
41-3 dZi—l + d2i
T . dpy
4i-2 d21~1 + dZi
(A-36)
- Rerro!
41 dyi Yy
= “Sr142
Moy Y
where di is defined by (A-29).
Substituting (A-31), (A-32), and (A-35) into (A-21) through (A-24) yields
4 4
e _ Z Z
Znij an=1 q=1(Tp, Tq, (G5 sin v,y sin vy + G, cos v, cos vj.)
Tp‘Tq. G,) (a~37)
4 4
ZE:(TR,T,(G sinv,,+-“—-—-TR,T',C) (A-38)
ey e (D A AL i keg, P! g T4
4 4
E . B Y -
n - & (Tp, TRq, G6 sin Vie F oo Tp, TRq. GA) (A-39)
J
n2
TR , TR , (G5 - G,) (A-40)
p=1 gq=1 4 k%0,40,,

p' =p + 41 - 4

(A-41)

g’ =q+ 4] ~ 4

A~-12




i' =p +21 -2
(A-41)
j'=q+2j -2

The subscript i' denotes evaluation at t The subscript j' denotes evaluation at

it

t.y. G&’ GS’ and G, are given by (A-25), (A-26), and (A-27) in which R is evaluated

J

at t = tg,, t' = tj' which, in terms of cylindrical coordinates, is at p, z, p', z'=

6

pi" Z,yy Pory 2.4 1f i"""jl

1 J J
given by

, R is replaced by an equivalent distance, Re’

=
]

v/(di./4)2 + 4p§'sin2 ($'/2) (A-42)

(A-42) may be obtained by displacing the field point a distance di'/4 perpendicular
to the plane of the source loop. Now, di,/4 is the equivalent radius [2] of a flat
strip whose width is di" (A-42) also can be obtained by averaging R2 for field

points displaced a distance di,/h in either direction along the approximate genera-

ting curve from the source loop.

An N point Gaussian quadrature formula is used to calculate the integrals

¢
Gb’ GS’ and G, defined by (A-25), (A-26), and (A-27). According to this quadrature

6
formula,
i N¢
£(4') do' = -}Z A, £G (x + 1)) (a-43)
k=1
0

where £(4') is the function being integrated and X and Ak are constants tabulated
by Krylov [3]. In (A-43), the multiplier, g-, and argument, %-(xk + 1), instead

of just x, are due to the transformation of Krylov's interval from ~1 to 1 into the

interval from 0 to w,

Since replacement of i, j, p, and q in (A-41) with j, i, q, and p, respectively,
implies replacement of i', j', p', and q' in (A-37) through (A-40) with j', i', and
q', and p' respectively, and since GA’ G5, and G6 are symmetric in 1i' and j', it is
evident that

tt tt
= A—104
Znij ani ( )




Z¢t - _ Zt¢

nij nji
(a-44)
o0 —l
znij ani

An efficient method of computing (A-34) through (A-40) that takes advantage of (A-44)
is employed in the computer code described in [4].

2. PLANE WAVE EXCITATION

- -
t ]
The nth mode generalized voltage vectors, Vn and Vn’ are matrix column vectors

with elements defined by (A-13) (with m replaced by n). For plane wave excitation,
(A~13) becomes, after substitution from (A-1), (A-2), and (A-10),

t6 t 2" NP AC RS 1)
vni =/dt ofi(t) / do (t-ee) e
0

VA

-j(k_r+n¢)
¢9 - ¢ A.,, ~a ~
\AN fdt pf (L) / dé (6:6)) e

0

(A-45)

2w
. -j(k_<r+n¢)
to _ t fed e -
vrli fdt Dfi(t)f d¢ (t ¢e) e
0

2m
~j(k _-r+n¢)
o _ N .. 3k, x
v = faroete) [ as b e

0

where the second superscript on V is 6 for the incident field @e given by (A-1) and
¢ for Ee given by (A-2).

With a view toward evaluation of (A-45), it can be seen from Figures (A-2), (A-6),
and (A-7) that

t-ee = -gin ee cos v + cos ee sin v cos ¢
¢-ee = ~cos ee sin ¢ A-46)
é-é = gin v sin ¢

P P




Figure A-~6. Unit Vectors 5, b, 5', and 3' in xy Plane

Figure A-7. Unit Vector t in p'z Plane
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¢4, = cos ¢

(A-46)
k *r =~ kz cos 8 - kp sin 9 cos ¢
~“e * e e

The substitution (A-46), (A-31), and (A-32) into (A-45) and the integral formula

Jn(ko sin ee) =i e d¢ (A-47)

-n 2n j(kp sin ee cos ¢ + n¢)
2n J/’

0

deduced from (9.1.21) of [5] for Bessel functions, yields

n : jkz cos ee
vi? - El—'z : Tp+4i—4(_2‘]n sin 8, cos v+ 3 (J , - J ;)cos 6, sin v)e
ni k -
p=1
" EA jkz cos 6
Vi T Tk £~ Torai-snep + Jpogicos 8, e
(A-48)
A .
to njnz: jkz cos ee f
vni o k p..-:l TPMi--A (Jn+1 + Jn"l)sm ve .r‘;
1
i f: jkz cos ©
¢ _ 1 3 .
"ol T TR Tottiet Une1 = Jo-p) @
p=1l
where
J_ =3 (ko sin 6)) i)
In (A-48), 0, z, and v are to be evaluated at t = tp+21-2'
A-16 ;




3. SCATTERING CURRENT

I¢.
nj
for each BOR mode n. The expression (A-8) for the corresponding surface current can

The solution to (A-20) yields the electric surface current coefficients Iﬁj,

be simplified, for plane wave excitation, by combining the n and -n terms. The sub-

stitution (A-9) into (A-8) yields

392 Y0 M EE 4 (1 15 (4-50)

NR=0

where ft is the transpose of the column vector £t of the f?(t), f¢ is the transpose

of the column vector ?¢ of the f?(t), and fﬁq and fﬁq are column vectors of the co-

efficients I;j and I: respectively. The additional superscript, q, is either 8 or

3
i ¢, depending on whether the incident electric field is 6 polarized as in (A~1) or ¢

! polarized as in (A-2). The column vectors, fﬁq and In , are obtained by solving the

matrix equation (A-20) with the additional superscript q on the column vectors there-

in to denote the polarization of the incident electric field.

Inspection of (A-21) through (A-27) reveals that

[Ztt . Ztcb:l
—n -

= n = 0, 1, 2, (A_Sl)
[stt 299 [_z¢>: 299 .
-n -n n n
It is apparent from (A-48) that
>t0 6t¢ 3:9 _+t¢
-Nn -n n n
= n=20,1, 2,.. (A-52)
Ak goe 790 Jo¢
-Nn -n n n

Since the property (A-51) survives matrix inversion, it is evident from (A-20) and

(A-52) that

A-17




e Tre Fto -te
-n -n n n
= n=0,1, 2,... (A-53)
F08 F00 -798 : Foo
-n -1l n n

In view of (A-53), (A-50) becomes

- @Y :z: 2" 1% £ cos (mo) + 25(E* %) § stn (ao))
n=1
(A-54)
P @b Z (25 E° %) £ sin o) + 2(E* T § cos (ne))
n=1
where Et and f¢ are row vectors of the f;(t) and f;(t), respectively. If pfg(t) J

and pf?(t) are the triangle functions themselves, rather than the four-impulse approx-

imations (A~31) and (A-32) to the triangle functions, then

-]

te - to - . 00 -
gt E {ZIni t cos (n¢) + 2j I'; ¢ sin (n¢) } |
t

"4

Poi+l
(A-55)

182 $ + :E: {2jI;$ t sin (n¢) + 2I:f ¢ cos (no)}
J¢| _ n=1

t=t_ -
2i+1 o441




4. NEAR E-FIELD

Near E~fields are computed in a manner similar to that described by Bevensee {6
The E-field, Ei, radiated by the nth mode of BOR current gn, along a circular path
concentric with the BOR axis is sought. This path is thickened into a ribbon of sur-

face area S (Figure A-8). A test surface current

=3+ 3° (A-56)
~n n -n
-jn¢

. . . . S -t
having e circumferential variation, resides on S where the t component,qn, lies

in the plane formed by the BOR generating curve and BOR axis and Ei is the ¢-directed

component. By reciprocity (7], the t and ¢ components of @:(gn) satisfy
] —=a = ,=a
/[@n(gn) J ds= //gn(qn)-gn ds (A-57)
3 S

where a = t or ¢ and En is the E-field radiated by j:.

With gn given by the nth mode terms in the summation (A-8), the right-hand side
of (A-57) becomes

//E (3%).5 as= 73t 3¢ 4 730 ¢ (A-58)
~“n -~n ~n n n n
S

where fﬁ and fﬁ are defined following (A-12) and z: and Za¢ are matrix row vectors.

The ith elements of Z:t and Z:¢ are

zab _
A _lyﬁE (J ) g ds

(A-59)

. =a -=a b
—f (Jue}(gn) + V“%”'%i ds

S

B sl ot —
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SURFACE AREA S

Figure A-8, Body of Revolution with Near-Field Test Ribbon !
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Figure A-9. Near-Field Test Ribbon Triangle Function (Solid)

and Four-Impulse Approximation (Arrows)
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and ¢, are given by (A-5) and (A~6

Let 35 and 3% be defined br

3t = f E(r) e7I70

t
n
-0 E® e~ine

are given by

: 4
= oE(t) = Z T8 - (p - %)A)

p=1

==

4
d ( Zeivy o = 1
SEEE) = Y T 8k - (0 - DY)
p=1

.i where
‘ 5 & _ kA
. T,=T,=7
| T = - k34
| T,=T3=7
|
C
—'=_'=—1-
‘ L =T,=3
b
= _ = 1
'= '=—_
, Ty = T, 3

A-21

where a = t or ¢ and b = t or ¢, and the vector and scalar potential functions, A

(A-60)

(A-61)

| where pf(t) is the "triangular" function shown in Figure A-9. The right-hand side of
: (A-59) then is within a minus sign of (A-12) if m and n in (A-12) are each replaced
‘ by -n, and g;(t) and §§(t) are each replaced by f(t). 1In this comparison of (A-59)
! with (A-12), the t¢ and ¢t terms on the left-hand side of (A-12) are reversed from

|

these of (A-15); therefore, the four-impulse approximations to pf(t) andé%—(pf(t))

(A-62)

A




and comparison with (A-37) through (A~40) and (A-25) through (A-27) yields

(A-63)

(A-64)

(A-65)

(A-66)

4 4
stt - = - ' '
Zni -in Z E {Tp, Tq (G5 sir‘x vy sin v + G, cos v, cos v) Tp' T(l GA}
p=1 gq=1
4 4
7t = 2 2:{1*& TGsinv-——-TR T 6,}
ni q 6 kp p' q 4
=l g=1
4 4
—¢t n ' -
2 .= - = T
ni Z Z sin Vi %5 Tp, q Ga}
p=1 g¢=1 q
500 2 : 2
Zni = =-jn E {TR ' T (G Gl.)
pi q
p=l gq=1

In (A-63) to (A-66)

m

IR
4 '/(; d¢’ R cos (n¢")

(2}
]

m

_ij
5 '/(; d¢' KR cos ¢' cos (n¢p')

o
]

1]
]

e.ij
6 [)dq&' R sin ¢' sin (n¢')

_ - .2 = (2 - 2 4
R = /(oi. - pq) + (21' - zq) + 4pioq sin (92—)

pt+4i -4

<
]

i' = p + 24 -2

(A-67)

(A-68)

(A-69)

(A-70)




v is the angle between the t coordinate of the test surface, S, and the z axis; p

and Eq are the p, 2 coordinates of Eq in Figure A-9.

Due to the rotational symmetry, the ejn¢

variation of qn (Equation (A-9)) implies
the same ejn¢

s s
variation of gn(gn), i.e., gn(gn) may be written

|
|

s - opt dnd | -~ 4 _jné -
gn(gn) tEn e + ¢En e (A-71)

where Eﬁ and E: are ¢ independent. If g: is approximately uniform over the width of

S, the left-hand side of (A-57) becomes approximately

4A 2
.8 -a _.a =
./:/.%(Jn)"ln ds—En j f f(t) o d¢ dt
3 0 0

(A~72)
= E2 4ma
n
where a = t or ¢. Equations (A-57), (A-58), and (A-72) yield
a_ 1 | zat ot zad ¢ -
En = Z;Z-(Zn In + Zn In) (A-73)

The t and ¢ components of the E-field ES radiated by the BOR surface current
are expressed as

(A-74)

n=1

A-23




where Ei and E: are given by (A-73). The positive and negative '"n'" modes -- e.g.,

- e

EE and Efn -- can be combined, as shown below, for each polarization, & and ¢ , of

incident plane wave (A-1) and (A-2). In the following development, a second super-

script on Ez, E:, fﬁ, or f: refers to this incident field polarization.

It is apparent from (A-63) through (A-69) that

Fte _ stt i
-n n &
5o . _sté ]
-n n H
(A~75) 5
§¢t - _§¢t i
-n n ¢
§¢¢ - §¢¢ ;
-n n

From (A~73), (A-53), and (A-75), therefore,

gto - pté
-n n ’
(A-76) :
E¢9 =_E¢9
-n n
for a 6 polarized incident field and
g9 . _pté
- n
(A-77) '
E¢¢ - E¢¢
-n n

for a ¢ polarized incident field. Equations (A-74), (A-76), and (A-77) yield

o

@«
§s = (Ege + E E;e 2 cos nd))E + E E:e 2§ sin n¢ «5 (A-78)
n=1l

n=1




for a 6 polarized incident field and

Es = Z E§¢ 2j sin n¢ t + (Eg¢ + z: 2 cos n¢)$ (A-79)
=1 n=1

for a ¢ polarized incident field.

g .
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or

5. NEAR H-FIELD

Near H-fields (radiated by the BOR electric surface current) are computed in a
manner analogous to that for E-fields. Again, reciprocity is employed in the deri-
vation and the test current (now magnetic rather than electric) is given the same
"triangular" t variation (A-62). A simpler t variation, such as pulse, could have

been chosen for computing the H-fields since derivatives of the test current then do

not occur; however, the choice of triangular variation maintains a consistency through-

out the overall analysis. The g-field derivation, and computer programming, then can

follow closely the H-field development of Mautz and Harrington [1].

The test surface, S, of Figure A-8 now contains a magnetic surface current, gn’

having e—3n¢

- ffﬂn(!n)‘l!n ds=ff E (M) ds (A-80)
B s

circumferential variation. By reciprocity, [7]

where En now is the E-field radiated by Mn’ gn is the nth mode surface current on S,

and Hn is the magnetic field radiated by Jn' From [1 (Section III)]

oik|r-r'|

M (")
- 1 ~nn -~ '
B0 = -V x 75 ff ' ds
S

r-r'|

(A-81)

= — fk‘jl(_l.g:g_'_l_ e"jkh'g" (E‘E') X Mn(gl) ds

vhere r is a field point at which En is evaluated and 5' is a source point (on S) at

which Mn is evaluated. Primes denote source coordinates and vectors. Then,

=M £+ N

Mo=M ¢’ (A-82)

¢
n

and




—

(t-r') x M_(z') = (z-r') x €' M

(£',8") + (z-r") x ¢'M® (&',4") (a-83)

The cross products on the right-hand side of (A-83) are evaluated by expressing all

3 s AP e B

vectors in terms of unit vectors p, &, and z in the p, ¢, and z directions,

; respectively.

. r = 0p + 2z (A-84)
r' = 6p' cos (¢'=¢) + ¢p' sin (¢'-¢) + zz' (A-85)
£' = ¢ sin v' cos (¢'-¢) + ¢ sin v' sin (¢'-¢) + 2 cos V' (A-86)
$' = -p sin (4' - ¢) + ¢ cos (¢'-9) (A-87)

Equation (A-85) has been obtained by first writing

p'o' + zz' (A-88)

and then using Figure A-6 to express o' in terms of p and é. To verify (A-86), use

Figure A-7 to express t' in terms of p' and z and then use Figure A-6 to express p'

in terms of 6 and $.

Substitution of (A-84) through (A-87) into (A-83) yields

(z-') x M (') = {6 (-p' cos v' + (z'-2) sin v') sin (¢'-9)

+ ¢ (~(p=p' cos (¢'-9)) cos v' - (z'-z) sin v' cos (4'-9))
(A-89)

+ zp sin v' sin (¢'-¢)} Mﬁ(t',¢') + {p(z'-2) cos ($'-¢)

+ §(2'-2) sin (6'-9) + (=p' + 0 cos (¢"-01)} M®(c',4")

Let v be the angle between t and the z axis. v is positive if t points away from
t

the z axis and negative 1f points toward the z axis. Then

(2 31

=psinv+zcosv (A-90)




and the t and $ components of (A-89) become

(283

[(r-x') x Mn(g')] = -(p' sin v cos v' - p gin v' cos v

(z'-2z) sin v sin v') sin (¢'-0) M;(ti,¢‘) - {((p*'-p) cos v (A-91)

(z'-2z) sin v) cos (¢'=¢) + 2p' cos v sin2 ($%§g5} Mg(t',¢')

[G-r') x ¥ ()] = {((p"-p) cos v' - (2'-z) sin v') cos (¢'-¢)

o>

(4-92)

20 cos v' sin2 (Q%fib} M;(t',¢') + (2'-z) sin (¢'-¢) M:(t',¢')

The distance |§-g'| appearing in (A-81) is the square root of the sum of the

squares of (z-z') and the projection of (r-r') in the xy plane. Hence,

\/(z—z')z + 9'2 + 02 ~2pp"' cos (¢'-¢)

le-r'| =
(A-93) 1
'—
- \/(o-o‘)2+(z-2')2 + oo sin? (2%
! An integral with respect to ¢' results when the surface integral in (A-81) is ﬁ
§ iterated. Because this integral with respect to ¢' is an integral of a 27 periodic

function of ¢' over the period 2m, ¢' may be replaced by ¢' + ¢ without changing the
value of the integral. Substitution of (A-91) through (A-93) into (A-81) yields

A‘28 H




2T

3
En(Mn) = Ez— k—"fp' dat' f de' GM;(C', ¢$'+¢) (p' sin v cos v' - p sin v' cos v
0
2m
1 ¢
~(z'-2z) sin v sin v') sin ¢' - 4_11_[0' dt’ f d¢' GMn(t', ¢'+9)
0
[((p'-p) cos v = (z'-z) sin v) cos ¢" + 2p' cos v sin® (%TQ]‘
27
~ k3 t [
+ 6y fp' dt' f de' GMn(t',4>'+¢) [((p'-p) cos v' -(2'-2) sin v')
0
(A-94)
t \ 2 ¢'
cos ¢' - 2p cos v' sin (7{0]
21
k3 1 ] 1] / 1 ¢ 1 1] ] i L
+ I /p dt do' GM (t', ¢'+¢) (2'-z) sin ¢
0
where
G = 1 + jkR e—ij (A-95)
k3R3
R = V/QD-D')Z + (z-z')2 + 4pp' sin2 6%%) (A-96)

All the iterated integrals in (A-94) converge because the integrands are at least as

well behaved as R_l.

Let

M, (e = wECe,00) or wE(e',00)

-




where
¢ - 6 e S
(A-97)
~: = § B(e') I

and pf is the "triangle" function of Figure A-9. With I given by the nth mode terms
in the summation (A-8), the right-hand side of (A-80) becomes

ffE (M )+J_ds = j" : (A-98)

where a = t or ¢, fﬁ and fﬁ are defined following (A-12), and ﬁ:t and ﬁ:¢

a¢

are matrix

row vectors. The ith elements of ﬁz and U

Uttlz = - jk3 f dtpf;(t) /dt' p' E(t') (o' sin v cos v' - p sin v' cos v
(A-99)
- (2z'-z) sin v sin v') Gy
vt =@ [acoeler fae oTen) (@) cos v
(A-100)
- (z'-2) sin Vv') G2 - Gl o cos v']
1
Ui); - fdt 0 ff(t) /dt' p'E(t") [((p'-p) cos v ‘
(A-101)
- (z'-z) sin v) G, + G;p' cos v] ;
| |
¢ U¢¢ - jk fdt o] fi(t) fdt' p'f(t') (z'-z) G3 (A—lO

A-30




where

L)

2 f de' ¢ sin2 (6'/2) cos (n¢d')
0

m

f d¢' G cos ¢' cos (n¢')
0

ul

-f d¢' G sin ¢' sin (n¢')
0

H

(A-103)

(A-104)

(A-105)

The four-impulse approximations (A-31), (A-32), and (A-62) for pf’i:(t), ofi(t),

and p'f

tt
ni

to
ni

¢t
ni

9¢
ni

where s

. = —jk(sj sin v

(t') reduce (A-99) through (A-102) to
4 4

_ = =tt

> Totbi-4 Tq Us
p=1 q=1

4 4

- 7 gto

- 2 Toui 20T s
p=1 q=1
4 4

= 7 gt
Z pHii-s Z Ta Us
p=1 q=1
4 4

_ = =66
E TRp+41—4 q US
p=1 q=1

denotes the double subscript p+2i-2,q and

cos v - p, sin v cos vy - (zj—zi) sin v, sin v)G3

i i

= k((oj—oi) cos v - (zj-zi) sin v)G2 - kpicl cos v

A-31

(A-106)

(A-107)

(A-108)

’
i




i< o

Gi; ='(k((5j‘pi) cos v, - (Ej—zi) sin v,)G, + kBle cos v,) (A-109)
5o - jk(z, - z,)6 (A-110)
ij A i’73

vy is the angle between the approximate BOR generating curve at (pi,zi)and the 2

axis, v is the angle between the t coordinate of the test surface and the z axis,

and Bj’ ;j are the p, z coordinates of Ej in Figure A-9. G,, G,, and G, are given
by (A-103), (A-104), and (A-105) in which G is given by (A-95) with R of (A-96)

evaluated at (p, z, p', 2') = (pi, Zys Sj’ Ej).

Due to the rotational symmetry, the eJn¢

variation of 3 (equation (A~9)) implies
jn¢

the same e variation of ﬁn(gn); i.e., gn(gn) is expressed by

o ¢ gt dnd 5 ¢ _inéd -
Bn(J“) tH e +toH e (A-111)

$

where H; and Hn are ¢ independent.

If gn is approximately uniform over the width of the test surface, S, and gn is

given by (A-97), the left-hand side of (A-80) becomes approximately

LA 2%
a -_u? = - _yd _
- -/:/‘Ejn(gn)'r:{n ds=-H_ f f f(t)pdodt H 4mA (A-112)
- 0 °0
S
where a = t or ¢. Equations (A-80), (A-98), and (A-112) yield
a _ -1 ,-at 2t ~a¢ 20 _
Hn ey (Un In + Un In) (A-113)

The t and $ components of the H-field H radiated by the BOR surface current are

expressed as




o _JhonaiiiaiSub Rt

o«

t'H = Ht + E (H§ eJn¢ + Ht e_3n¢)

foo]

0 -n
n=1
L (A-114)
o H = Hg + Z (Hj: eI™? 4 an Ity
n=1

where Hg and Hi are given by (A-113). As with ES of (A-74), the positive and nega-

tive "n" modes of H can be combined, as shown below, for each polarization, 6 and ¢,

of incident plane wave (A-1) and (A-2). A second superscript on Hg, Hi, fﬁ, or fz

in the following development refers to this incident field polarization.

It is apparent from (A-99) through (A-102) that

ﬁtt = _ﬁtt
-n n
ﬁt¢ = ﬁt¢
-n n
(A-115)
gt = ot
-n n
b = _pb¢
-n n
From (A-113), (A-53), and (A-115), therefore,
HE® o _yt®
~-n
(A-116)
-n n
for a 6 polarized incident field and
yte - yxté
-n n
(A-117)
p®® = g%t
-n n

for a ¢ incident field. Equations (A-114), (A-116), and (A-117) yield

Sm e
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- E H;e 21 sinn¢ £ + (ng + Z Hj:e 2 cos ne)é (A-118)

n=1 n=1 -

L=

for a 0 polarized incident field and

= (HB*” + Z H:” 2 cos n¢)t + Z H:"’ 2§ sin no ¢ (A-119)

n=1 n=1

{3+ 0

for a ¢ polarized incident field.
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>
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Figure A-10. An Equivalence Theorem




6. APERTURE COUPLING

The method for computing the near scattered fields of a BOR with edges (Sections
1 through 5 of this appendix) is, in theory, directly applicable to computing the
fields penetrating a conducting BOR with rotationally symmetric apertures; e.g.,
Figure A-l. The internal field is the vector addition of the scattered field (Sec-
tions 4 and 5) and the impressed field. For plane wave excitation, the impressed
field is the incident field ge given by either (A-1), (A-2), or a linear combination
of (A-1) and (A-2). Each BOR model component of §e, at a field point of interest,

is readily computed from relations similar to those of Section 2.

As often occurs with well-shielded bodies (e.g., those having only tiny or thin
apertures), the scattered and impressed fields are nearly equal and opposite at
points within the body. The vector sum of these fields then is a subtraction of al-
most equal numbers with an associated loss of accuracy. This undesirable computation
is avoided by invoking an equivalence theorem, due to Schelkunoff [8], whereby the
cavity field is computed as a radiation problem once an equivalent aperture excita-
tion is determined., This theorem states that the original problem, containing sources
external to the body, can be replaced with an equivalent problem having only
aperture current sources for excitation. Figure A-10 illustrates this where the
original problem (Figure 10a) is equivalent to the sum of the two problems (Figures
10b and c). The induced surface current J in the vicinity of the aperture is found
for the apertureless (cover aperture with conductor) body in the presence of the ex-
ternal sources (Figure 10b). Then, (-J ) becomes an aperture excitation resulting
in the external fields of the original problem (Figure 10c). The application of this
theorem to the moment method formulation of the BOR aperture coupling problem has
been described in [9]. An intermediary aperture tangential E-field computation was
employed and the method called BOR3. The method is called the Equivalent Aperture
Excitation Technique, EAET, in this report.

A modified method that avoids the aperture field computation has been developed
[10]; however, knowledge of the aperture tangential E-field when the aperture is
"empty" is useful in incorporating the Aperture Loading Technique, ALT, discussed in
the main body of this report. The ALT accounts for odd shaped, material filled,
thin apertures such as occurs at ''sleeve' type joints between BOR sections. Thus,
the following description of EAET is an adaptation of [9] to the development in
Sections 1 through 5 of this appendix.
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The apertures are removed (covered with perfect conductors). The induced current

on this "short-circuited" BOR is expanded as

- z " ast, g ¢ gty A-120
s (IS, doy + IS0, 300) (A-120)
n,]
—>t -+¢ t ¢
where column vectors ISn and ISn, composed of the coefficients ISnj and Isnj’ respec~

tively, are the solutions fg and fﬁ of (A-20).

The apertures are replaced (shorting conductors removed) and are filled with the

equivalent aperture current source, JA, expanded as

- t t ¢ ¢
" }E: (IAnp o3, ¥ Mnp oy ) (a-121)
o~ P P
where
1aY = - st
np nj
P (A-122)
a® = - 1s?
np njp

and the pth t-directed (or ¢~directed)aperture expansion function is the j th corre-
sponding generating curve expansion function. The external incident field, §e, is
removed and this new problem analyzed as follows. First, the aperture tangential

component of E-field is expanded as

= t : L -
Htan }E: (A E+EAL® (A-123)
n,p
where
jné
t _ _ oat - e 7
EAnp = VAnp s(t tsz+1) T
(A-124)
jne
49 = _ yal e e
EAnp VAnp 8(t t2jp+1) 2n

§(t) (Section 1 of this appendix) denotes the unit impulse function, and t;j +1
p

(Figure A-3) is the BOR generating curve t coordinate of the triangle function
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pf§ (t) (or pf?p (t))peak. The j;h generating curve triangle function is the pt

P
aperture located triangle function.

h

Each VA;p and VAzp can be thought of as port voltage sources through which a sur-
face current flows. One seeks values of VA:;p an” VAj:p for which JA, given by (A-121)
and (A-122), flows through the aperture ports. These values are obtained by relating
the IA;P and IA:p of (A-121) to the VA:ip and VAip by the matrix equation

At (vat®)  [vat? vat

n n n n
= (A-125)

1A% (va®ty  [va®® va®

n n n n

. th >t >4 2t ¢
and solving (A-125). In {(A-125), the p  elements of IAn’ IAn, VAn, and VAn are

t ¢ t ¢ ab =
IAnp’ IAhp’ VAnp, and VAnp’ respectively. The matrix of [YAn ], ab = tt, ¢t, tf,

and ¢¢ submatrices is called the "aperture admittance matrix."
The pqCh elements of [YA:b], ab = tt, ¢t, t¢, and ¢¢, are found by "exciting"

the BOR with the tangential aperture field, EAtan’ given by (A-123). This requires
satisying the boundary condition

Ean = EA .0 on § (A-126)

where (Section 1 of this appendix) §s is the field radiated by the BOR surface cur-
rent, J. A development similar to that following (A-3) applied to (A-126) yields
(A-20) with the exception that the jth element of Vﬁ and Vﬁ are, respectively,

t .
Vt. = VAnp ’ jp
nj
h
0 otherwise (A-127)
$
VA =
V¢ - np i jP
nj 0 otherwise
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The elements of ft and
n n

>t > ¢
the elements of IAn and IAn; i.e.,
t t
I, = IA if =
nj np 3 jP
¢ [
I = JA if =
nj np i jp

In light of (A-125), (A-127), and (A-128) and defining the inverse of the impedance

matrix in (A-20) as

-1
S BN S (251 1zf?
: 1 et (251 1zt

the pqth elements of [YA;C], [YA:t], [YA§¢], and [YA:¢] become

vatt = ytt
npq 'njqu
= ¢t
npq njqu
to té
YA = Y
npq anJq
npq njqu

in (A-20) corresponding to aperture expansion functions are

(A-128)

(A-129)

SRS N
B s

(4-130)

The solution of (A-125), with IA, and IA® given by (A-122), provides the aperture

¢ port voltage sources that correspond to the aperture tangential E-field within the

A-38

approximation (A-124). Excitation of the BOR with these voltage sources yields the




'4.

internal fields of the original problem.

This finaj analysis 1s carried out by solv-
ing (A~

efficients with 6: and 6: given by (A-

© determine the near E- and H-
dix.

127).
fields as

These current coefficients then are used t

detailed in Sections 4 and 5 of this appen
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